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Abstract. We study the existence of a stable ground state for scalar QED in four dimensions 
within a variational approach. The results are similar to those for Ar#J4: in its regularised 
version there is a metastable ground state which becomes stable when the cut-off is removed. 
However, contrary to what happens for Ar#J4 the bare coupling constant A B  does not now 
have to be negative. The theory is interacting and the renormalised coupling constant is 
negative, A < 0. 

1. Introduction 

Our simplest field theory in four dimensions, A 4 4 ,  is very likely to be trivial when A B ,  

the bare coupling constant, is positive ([l], footnote 8). This condition is needed for 
the convergence of the functional integrals, which otherwise would have to be regu- 
larised for large quantum fluctuations. Recently Stevenson [2] has found within a 
variational approach [3] that for A B  < 0 but vanishing when the cut-off is removed, the 
theory has a stable ground state and is interacting with A < O .  More precisely the 
theory has a metastable ground state in its regularised version but the lifetime of this 
state diverges when one removes the cut-off. He calls such a theory precarious. Notice 
that this result is telling us that the theory only exists, is finite, stable and interacting 
when it is asymptotically free, as happens for the ‘wrong sign’ A44 theory. The inclusion 
of odd terms in the field does not alter these conclusions for 44 [4]. 

The aim of this work is to present a similar study for scalar electrodynamics. Scalar 
electrodynamics is our simplest gauge theory and thus an extremely interesting model 
to study as carefully as possible. We want to know, within the variational approach 
mentioned above, whether the theory exists, i.e. is stable and interacting, and if so, 
whether it shows spontaneous symmetry breakdown as predicted by the one-loop 
corrections [ 5 ] .  It should be mentioned, however, that the variational ansatz we follow 
in this paper is very likely inadequate for the study of the broken phase and so not 
much can be said with confidence with respect to spontaneous symmetry breakingt. 

With this qualification in mind our results are the following: the theory only exists 
for very special values of the two coupling constants, A B  being vanishing when the 
cut-off is removed. However A B  does not now have to be negative and this makes the 
study of this theory amenable to those methods which require A B  > 0. The renormalised 
quartic coupling constant is negative, A < 0. Furthermore there is no spontaneous 
symmetry breakdown and it looks as if the theory is asymptotically free. 

t One of us (RT) thanks P M Stevenson for pointing this out to him. 
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Let us finally mention that the variational method we use is non-perturbative and, 
as shown by Stevenson [6], does not reproduce perturbation theory. We believe it to 
be an adequate method for the study of interaction and existence because it leads to 
an upper bound oPthe energy density. We do not consider here the critical comparison 
with the one-loop effective potential, which is a perturbative magnitude. 

2. The variational analysis 

The Hamiltonian density of scalar electrodynamics is 

X =  $‘$+V4’ . V ~ + m 2 , 4 ’ ~ + A , ( 4 t ~ ) 2 + i e B ( V ~ t ) 4 A - i e B 4 t ( V 4 )  - A-e i4 ’4AtA,  

+ ;A * k - f ( VAo) * (V A’) + $( v ‘A’) ( v ‘A’ - v ’A‘ ) - &[ A”Ao - ( ( 1 ) 

where the subscript B indicates that all parameters are bare and the last term is the 
gauge fixing term. Notice that m i  can be negative. The computation of the ground 
state energy within the Gaussian approximation is straightforward [2]. One writes 

W k ( R 2 )  = ( k 2 + Q 2 ) l ’ 2  

[&(IC), bA(k’)]=[dn(k), dA(k’)] = ( 2 ~ ) ~ 2 ~ ~ ( n * ) a ( k - k ’ )  

wq(A2) = (q2+A2)1’2 

[a*(q,  s), d(4 ’ s ’ ) l  = - (2 .rr)32~q(A2)g*s4q - 4)  
bn(k)IOna)=dn(k)IOnA)= s)lOna)=O 

(On* I On*) = 1 

S ) E ; ( q ,  s’) = gss, c gssECl(q, s ) E ” * h ,  s) = gP” (3) 
S 

and R and A are as yet undetermined functions of the constant background field 40. 
Then an upper bound of the ground state energy density is given by the minimum of 

when 4o is varied in the whole parameter space, R(4,) and having been fixed 
before by minimisation. Equation (4) has ultraviolet divergences of two kinds; one 
group is absorbed by renormalisation of the mass and coupling constant of the scalar 
field and the rest correspond to the zero-point energy which we will just subtract. 

The computation of (4) is simple and leads to 

(Onal~e(o,,)=21,(n2)-R2zo(R2)+ mka + mZ,lo(R2)+A,a2+4hglo(R2)a + ~ A B I $ ( ~ ~ )  

+2ei10(A2)a +2e~Zo(R2)Zo(A2) +(3+2&)(11(A2) -$A2Zo(A2)) (5) 



Stability and triviality of scalar QED 2089 

where 

Notice that Z,(n2) is divergent for n a -1. We will regularise the theory with a 
symmetric cut-off A.  The domain of the validity of the regularised theory is 

0 ,Rz, A', a << A'. ( 7 )  

Before going on let us recall here that the effective potential for a gauge theory is 
gauge dependent [7], as corresponds to its off-shell character, but that its value at 
stationary points is gauge independent [ 81, as corresponds to its interpretation as 
vacuum energy density. Thus our study of the existence, i.e. the boundedness from 
below, is gauge independent as can furthermore be checked in the following, in spite 
of the appearance of tB in many intermediate formulae. For the same reason the 
analysis of spontaneous symmetry breaking is gauge independent. 

Let us renormalise the theory at a = 0. In order to obtain the renormalised para- 
meters we will start by obtaining ni=fl'(O) and A i = A 2 ( 0 )  by minimisation of 
""(0; ai, A i ) .  From (5 )  

which leads to 

or if (9) do not have a solution which is the absolute minimum of Ir(0; fli, A i ) ,  to either 

or 

or finally 

Szi = A i  = 0. 

Let us consider each of these cases in turn. 
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2.1. l2:> 0, A i >  0 

The minimum is given by (9) and is in the interior of the ai, A i  space. For this to 
be possible necessarily 

( B + Z > o .  (13) 

This inequality is inherent to the approach we follow, in which the trial fields are free. 
Indeed (,+: is nothing but the coefficient of the trace of the free Euclidean gauge 
field propagator, which is required to be positive. Equation (13)  is a requirement of 
the method, and has no other significance (this is analogous to the requirement tB > 0 
of the one-loop effective potential calculation which otherwise becomes complex [7]). 

In order to ensure that the stationary point is a minimum (and not a saddle point 
or maximum) one needs 

1 + 2 h ~ I - l ( f i i )  > 0 (14) 

d 21o(Ri)( 1 +2ABI-1(fli)) - eiAGI-l(Qi)Z-l(Ai) > 0. (15) 

One can check that these are not only sufficient but also necessary conditions for (9) 
to give a local minimum. 

The renormalised mass is given by 

which from the first of (9) implies 

m2 =ai> 0. (17)  

In this phase the renormalised mass squared defined at the origin is positive. 

A s id2Zr(a ;  02, A2)/da2/,=, 

The renormalised coupling constant is given by 

= hB-2A~n2,’I-,(ni)+a(n:)~I-,(Ri)(l +2A~I-1(f i i ) )  - eiA2,’Z_,(Ai) 

+feini’Ai’Z_,(n~)Z-](Ai) +;e; (  Io(fii)/Ai)I-l(Ai)(Ai’)2 (18) 

ai’= dR2/dal,,, A i ’ =  dA2/da I,=,. 
where 

These parameters are fixed by mininisation of A, which corresponds to minimisation 
of V(a; R2(a) ,  A2(a)) for small a. This leads to 
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has been repeatedly used. We will furthermore need the expressions 

I, (a’) - I, (0;) = ;(a’ - a:) Z0( ai) - ;(a’ - ni)’Z- ,( n:) + E( a’, a;) 

We now subtract a uv divergent constant which contains the zero-point energy by 
considering 

% ( a ;  R’(a), A2(a) )  = V ( a ;  n’(a), A2(a)) - V(0; R;, Ai) (23) 

which, using (22), gives 

% ( a ;  a’, A2) =$(R’-m’)’Z-,(m’)-(Cl’- m2)r(f12, m2)+2C(f12, m’) 

+2A,[( a -;(a2 - m2)z-,(m2) +r(n2, m2)]’ 

+ m’a -h,a2+2e;[a -t(n’- m2)z-,(m2) -r(a2, m’)]  

x [ - $(A’ - Ai) Z-I(A;) + r( A: A i ) ]  
+2(e$Zo(m2)/Ai)[$(A’ -Ai)2Z-l(Ai) -(A’-A:)r(A’, Ai)+2X(A2, Ai)] 

(24) 
where R’ = n’(a) and A’ = A2(a)  are the functions of a which minimise (24). 

Notice that for fixed a and R2 and A’ large (24) leads to 

+ $eiR2A2Z-,( m 2 )  1-, ( A i )  + 7 A 4 Z 0 (  m’) Z-,( A i )  ( 2 5 )  
260 

where we have kept a subdominant term for later convenience. From (14) this 
expression is positive and blows up. Thus n’(a) and A’(a) are either given by a 
stationary point of (24) 

m 2 - a ’ + 4 h ~ [ a  --;(a’ - m2)z-,( m’) +r@, m’)] 

+ 2e;[-$(a2 - Ai)I-,(Ai) + T(ii2,  A i ) ]  = 0 

a - $(ai’ - m2)Z-,( m’) + F@’, m’) - (Io( m2)/A;)( A’ - A i )  = 0 

or by 
n2=0 

a +$m2Z-,(m2)+ m 2 / 1 6 ~ 2 - ( Z O ( m 2 ) / A ~ ) ( ~ 2 - A ~ )  = O  
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or by 

m 2 - a ’ + 4 h ~ [ a  -;(a’- m 2 ) I - l ( m 2 ) + r ( i i ’ ,  m’)] 
A’=O 

+2ei(iA:Z-l(A:) +A; /16~’ )  = 0 

or finally by 
R 2 = A 2 = 0  

depending on which gives the absolute minimum. The last two cases imply from (24) 
that 

e: - m4/10( m2)I-l(Ai)Ai (30) 
if the energy density is to be finite when A +. CO, as is required by a correctly renormalised 
theory. It can then be seen, plugging (30) into (24), that minimisation leads to 
A 2 = A i > 0  for all a, contrary to what (28) and (29) imply. Thus only (26) or (27) 
apply. Then 

A’ - A i  - m2Ai/ Io( m’) (31 )  
which makes all the electromagnetic terms of (24) so weak that one can neglect them, 
unless 

e: = %‘iIo(m2)/AiI-,(Ai) (32) 
where 8; can still contain logarithms of the cut-off A. We will now continue the study 
just for the case of (32), as it is the only one which might lead to a finite theory with 
electromagnetic interaction. For it (20) reads 

(33)  h = -h B - 2/ I -  1 ( m 2 ) [  2 + ( 4 h ~  - 8;) 1-1 ( VI’)].  

Consider first (26). Using its second equation and (32) the energy density reads 

%(a, a’) = :(a’- m2)21-l(m2) - (6’- m2)r(d’, m ’ ) + 2 ~ ( a ,  m’) 

+ (2AB -;%:)[CY -+(a2 - m 2 ) I - l (  m’) + r(a’, m’)]’ 

+ m’a - A ~ ~ ’ + O ( I / A ’ )  (34) 

(35) 

and the first of (26) is now 

m 2 - a ’ +   AB- %“,)[a -;(a’- m2)I-l(m’) +r(a2, m’)]+O(l/A’) = 0. 

There are now three phases which lead to a finite energy density and to a finite 
renormalised coupling constant. The first one corresponds to 

which just satisfies the inequality of (15). On the other hand, (14) in turn allows the 
following values of AB:  

for which (25) is still positive (due to its subdominant term), or 
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or 

The renormalised coupling constant is 

for the first two cases and 

h = - d - 2 / ~  (41) 

for the last one. 
Equation (35) reads for the expression of (36) 

c(f i2--m2)+4(a+r(f i2 ,  m’)) = O  (42) 

% ( a ;  Cl’) =2z(fi2, m 2 ) + $ c ( f i 2 - m 2 ) 2 + f i 2 a  - ~ , a ’ .  

and (34) reads 

(43) 

Equation (42) does not have a solution beyond some value of a. Then necessarily the 
solution of (27) applies. It leads to 

m4 m4 2 f f 2  8( a ; 0) = --+ C- - ABCY -~ 
64.rr2 8 I-  ( m ’) ‘ 

(44) 

Notice that if c < 1/8r2,  8(0,0) < O  and the assumption that (9) gives the absolute 
minimum is wrong, so that (10) would apply. Also c = 1/8.rr2 is not within the case 
we are studying ( m2 > 0) as it corresponds to a case when (9) for > 0 and (10) are 
equal minima; but in some neighbourhood of a = 0 (44) lies below (43) so that really 
m2 = 0. Sticking to our case we thus have 

c > 1 / 8 r 2 .  (45) 

When (39) appliek (44) is unbound from below. When (37)  or (38) apply the coefficient 
of the a 2  term is negative but infinitesimal. It goes to zero when the cut-off is removed. 
The regularised theory has a metastable ground state such that its lifetime becomes 
infinite when the cut-off is removed. It is precarious in Stevenson’s sense [ 2 ]  and, for 
h+m,  (42)-(44) read ( a ,  being the transition point) 

%‘(a)  = [22(fi2, m 2 ) + $ c ( b 2 - m 2 ) 2 + a 2 a ] e ( a c - a )  

+im4(c-1/8.ir2)e(a - a c )  

c ( f i2 -  m 2 )  + 4 ( a  +r(fi2, m 2 ) )  = o a <a,. (46) 

When the theory is stable, and for those values of a for which (42) and (43) apply, 
the energy density increases with increasing a until it reaches the solution of (44), 
when it becomes flat. There is no sign of spontaneous symmetry breakdown. When 
the theory is unstable,(equation (39)) the energy density as given by (42) and (43) is 
non-monotonously increasing, as 

d 8 ( a ;  a’) a%‘(a; a2) 
= fi2 - 2da - - 

d a  aa 
(47) 
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will become negative for small enough CY (so that (42) and (43) still apply) if d is large 
enough. Only the unstable theory might exhibit spontaneous symmetry breakdown, 
but this makes no sense. 

A second phase is described by 

4 h ~ -  %:= o(l /I! , (1112)) .  (48) 

Then (35) implies 

ii2 = m 2 + 0 (  I / I - ~ (  m 2 ) )  (49) 

and (33) leads to A = - A B  so that from (34) 

& ( a )  = m 2 a  +ha2  (50) 

which is the classical potential and is either trivial or unbound from below as (14) 
implies A 6 0 .  The last phase is when 

4 h ~ -  %i= C+O(l/I-,(111’)) c > o  (51) 

which satisfies ( 1 5 ) .  This requires 

A B  = d + O( 1/ I-1( VI ’ ) )  d > O  

which satisfies (14) and leads to a renormalised coupling constant 

A = - d .  (53)  

Substituting (35) into (34), this last one again reads 

& ( a )  = m 2 a  -da’ 

which is unbound from below. 

(54) 

2.2. n’,= 0, A’,> 0 

There are two subcases. 

(i) mi+ 4AB10(0) + 2eiIo(Ai) = 0. 

This means that we are still with (9), but with the solution now at the border of the 
Oi ,  A; space. Let us assume that in some neighbourhood of CY =0,  O’(CY) # 0. Then 
the first steps of the previous analysis still apply and m2 = 0. It can be seen that this 
case is just the limit m’+O of the previous one. This then shows immediately that it 
cannot lead to an interacting theory, as a,  tends towards zero. 

If 0 2 ( a )  = 0 in some neighbourhood of a = 0 the analysis is a particular case of 
the next subcase, so let us consider this one first. 

(ii) m i  + 4A,10( 0) + 2e;Zo( A i )  < 0. 

We are now with (10). Obviously ( 1 3 )  still applies. The renormalised mass is given by 

111 = 111 + 4A B Io (0) + 2 e: Io( A i )  ==C 0 ( 5 5 )  

where we have used the fact that in some neighbourhood of CY = 0, Oi’  = 0. This is 
because 
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will, because of continuity, still be true at some neighbourhood of Q = 0 so that there 
R 2 ( a )  =O.  Notice also that (55) ensures that (10) is a minimum. 

The renormalised coupling constant is given by 

A = A B  - e i Z - l ( A i ) A t  +$($ + &,) Z-,(Ag)(A:)2. (57) 

Minimisation of A leads to 

which then gives 

A = AB-eZgA~I- l (Ai) /210(0) .  
The subtracted energy density is given by 

( 5 9 )  

Q4 R2 
%(a; a’, A2)  = 

6 4 r 2  32r’ 
1 

+2AB a--R2 l n 7 - 1  

- ~ ~ a ~ + m ’ a + 2 e 2 ,  a - y R 2  l n 7 - 1  

[ 1 6 r 2  ( y2  )I2 
1 [ 1 6 r  ( y 2  )]  

x [-;(A2 - A i )  1-1 ( A i )  + I-( A2, A i ) ]  

+- 2 e;  IO( 0 1 [ ~ ( A 2 - A : ) 2 1 - l ( A ~ ) - ( A 2 - A ~ ) r ( A 2 ,  A i ) + 2 X ( A 2 ,  A i ) ]  (60) 
A: 

where R 2 = Q 2 ( a )  and A 2 = A 2 ( a )  are the functions of a which minimise (60). For 
fixed Q and Cl’ and A‘ large this equation leads to 

which requires, for stability reasons, 

As before one finds that the only case of interest is 

e; = ~ ; I ~ ( o ) / A ; I - ~ ( A ; )  
so that 

A = 2 B. 

The functions R’(a) and A 2 ( a )  which minimise (60) are given by 

+ 2 e ; [ - t ( ~ 2 - A i ) 1 _ 1 ( A i )  +r(&*, A i ) ]  = 0 
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or by 

R = O  

a - ( iO(o)/ A ; ) ( L ~  -A;) = 0. 

In some neighbourhood of a = 0 necessarily this last case is operative. Then from (60) 

8 ( a ;  0, ii2) = m2a + h a 2 .  (67) 

As (66) has a solution for all a, stability requires A > 0. This then implies from (64) that 

A B  = d + O( 1 / I - ,  (m’)) 

8; < 2d. 

d>O 

Beyond some value of a (65) could give a lower value of the energy density than (66). 
Equation (65) can be simplified to 

m2-f i2+(4A,-82 , )  a--R2 l n y - 1  = O  E 1;2- ( :* )I 
which has a solution for all values of a beyond a certain value. For this solution (60) 
reads for large a 

% ( a ;  fi2, L 2 )  - -da2 (70) 

and is thus unbound. 
It is clear now that the particular case of subcase (i)  which we have left corresponds 

again to a massless theory which is the m 2 + 0  limit of subcase (ii). Thus case 2 
corresponds either to a free theory or to an unstable theory. 

2.3. 0; 3 0, A ;  = 0 

This corresponds to (11) and (12). For it to be a minimum 

WO; a;, A ; ) / ~ A & ; = ~ S  o (71) 

which from the second of (8) is seen never to be true. This case never applies. 
The analysis is thus completed. 

3. Conclusions 

Within the Gaussian approximation of a variational approach to the energy density 
of scalar quantum electrodynamics we have found one phase for which there exists a 
stable, although precarious, ground state and the theory is interacting. It is given by 
(36)-(38) and it implies 

m’> 0 
(72) 

-16r2<A<O.  

This is very much like what we know for [2]. However, the renormalised parameters 
of (72) now do not require A B  infinitesimal and negative, but only infinitesjmal. This 
makes this phase lie within the reach of functional methods which require convergence 
of the contributions due to large quantum fluctuations. 
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Notice that because beyond a certain value of a the energy density is flat the 
renormalised coupling constant defined there would be zero. This reminds one of 
asymptotic freedom, but this should be taken with a pinch of salt as this is the region 
where the variational parameter SZ takes a boundary value and one knows that this 
indicates that the variational ansatz is not the adequate one, or maybe that the effective 
potential is not well defined there. On the other hand, the fact that this flat energy 
density is an upper bound of the true one does not seem to leave much choice: if the 
true theory is to be stable it will have to be essentially flat and thus asymptotically 
free. It seems as if stability of the interacting theory requires asymptotic freedom. 

Also, as for AC#14, stability of the interacting theory is precarious in Stevenson’s 
sense. Finally, again as for A c $ ~ ,  the renormalised mass is positive and there is no 
spontaneous symmetry breakdown. This last point however might well be a con- 
sequence of the variational ansatz assumed, and in particular of the fact that both 
components of the complex field C#I have been taken with the same variational mass 
0. A study with a more powerful ansatz is under way. 
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